Operators in Java

By

Dr M. Senthilkumar

What are Operators?

- An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations
- Java has rich set of built-in operators

Types of Operators

- Arithmetical operators
- Relational operators
- Logical operators
- Assignment operators
- Conditional operators
- instanceof operator
- dot operator

Arithmetic operators

- Arithmetical operators are: +, -, *, /, and \%
- They are used to performs an arithmetic (numeric) operations
- You can use the operators +, -, *, /, and \% with both integral and floating-point data values

Arithmetic operators

Operator	Meaning	Variables	Integer Arithmetic	Float Arithmetic	Mixed mode Arithmetic
+	Addition	$\mathrm{a}+\mathrm{b}$	$10+5$	$10.0+5.0$	$10.0+5$
-	Subtraction	$\mathrm{a}-\mathrm{b}$	$10-5$	$10.0-5.0$	$10.0-5$
*	Multiplication	a * b	$10 * 5$	$10.0 * 5.0$	$10.0 * 5$
/	Division	a / b	$10 / 5$	$10.0 / 5.0$	$10.0 / 5$
\%	Modulus (Remainder)	$\mathrm{a} \% \mathrm{~b}$	$10 \% 5$	$10.0 \% 5.0$	$10.0 \% 5$

Relational operators

- The relational operators are used to compare two values
- All relational operators are binary operators and therefore require two operands
- A relational expression returns zero when the relation is false and a non-zero when it is true

Relational operators

Operator	Meaning	Variables	Comparing Integers	Comparing Float	Mixed Mode
$<$	Less than	$\mathrm{a}<\mathrm{b}$	$10<5$	$10.0<5.0$	$10.0<5$
	Less than or Equal to	$\mathrm{a}<=\mathrm{b}$	$10<=5$	$10.0<=5.0$	$10.0<=5$
	Greater than	$\mathrm{a}>\mathrm{b}$	$10>5$	$10.0>5.0$	$10.0>5$
$>$	Greater than or Equal to	$\mathrm{a}>=\mathrm{b}$	$10>=5$	$10.0>=5.0$	$10.0>=5$
Equal to	$\mathrm{a}==\mathrm{b}$	$10==5$	$10.0==5.0$	$10.0=5$	
$==$	Not Equal to	$\mathrm{a}!=\mathrm{b}$	$10!=5$	$10.0!=5.0$	$10.0!=5$
$!=$					

Logical operators

Operator	Meaning	Variables		
$\& \&$	Logical AND	$\mathrm{a}>\mathrm{b} \& \& \mathrm{a}>\mathrm{c}$		
$\\|$	Logical OR	$\mathrm{n}<10 \\| \mathrm{n}>50$		
$!$	Logical NOT	$!\mathrm{a}$		

| Expression1 | Expression 2 | $\& \&$ Result | \|| Result |
| :--- | :--- | :--- | :--- |
| True | True | True | True |
| True | False | False | True |
| False | True | False | True |
| False | False | False | False |

Assignment operator

- The assignment operator ' $=$ ' is used for assigning a variable to a value
- This operator takes the expression on its RHS and places it into the variable on its LHS
- Variable = Expression;
- $\mathrm{c}=\mathrm{a}+\mathrm{b}$;

Shorthand Assignment Operators

Operator	Example	Equivalent to
$+=$	$\mathrm{A}+=2$	$\mathrm{~A}=\mathrm{A}+2$
$-=$	$\mathrm{A}-=2$	$\mathrm{~A}=\mathrm{A}-2$
$\%=$	$\mathrm{A} \%=2$	$\mathrm{~A}=\mathrm{A} \% 2$
/=	$\mathrm{A} /=2$	$\mathrm{~A}=\mathrm{A} / 2$
$*=$	$\mathrm{A} *=2$	$\mathrm{~A}=\mathrm{A} * 2$

Increment and Decrement Operators

- Java provides two special operators: '++' and '--' for incrementing and decrementing the value of a variable by 1
- The increment/ decrement operator cannot be used with constant
- Increment and decrement operators are classified as pre-increment and post-increment

Increment and Decrement Operators

- The syntax of the increment operator is:
- Pre-increment: ++variable
- Post-increment: variable++
- The syntax of the decrement operator is:
- Pre-decrement: -variable
- Post-decrement: variable-

Increment and Decrement Operators

- In Prefix form first variable is first incremented/ decremented, then evaluated
- In Postfix form first variable is first evaluated, then incremented / decremented.
- ++a
- a++

Conditional operator

- The conditional operator ?: is called ternary operator as it requires three operands.
- The format of the conditional operator is :

Conditional_ expression? expression1 : expression2;

- If the value of conditional expression is true then the expression1 is evaluated, otherwise expression2is evaluated.

Conditional operator

int $\mathrm{a}=5$;
int $b=6$;
big $=(\mathrm{a}>\mathrm{b}) ? \mathrm{a}: \mathrm{b}$;

- The condition evaluates to false, therefore big gets the value from b and it becomes 6 .

Bitwise Operators

Operator	Meaning
$\&$	Bitwise AND
\|	Bitwise OR
\wedge	Bitwise X-OR
\sim	Bitwise Complement
\ll	Bitwise Shift Left
\gg	Bitwise Shift Right
\ggg	Bitwise Shift Right with Zero fill

The instanceof operator

- It is an Object reference operator

Person instanceof Student

The dot operator

- It is used to access the instance variable or method of an object

Person.age
Person.salary()

Expression Evaluation

$$
\begin{aligned}
\mathrm{a} & =9 \\
\mathrm{~b} & =12 ; \\
\mathrm{c} & =3 ; \\
\mathrm{x} & =\mathrm{a}-\mathrm{b} / 3+\mathrm{c} * 2-1 ; \\
\mathrm{x} & =9-12 / 3+3 * 2-1 ; \\
& =9-4+3 * 2-1 ; \\
& =9-4+6-1 ; \\
& =5+6-1 ; \\
& =11-1 ; \\
& =10
\end{aligned}
$$

Expression Evaluation

$$
\begin{aligned}
\mathrm{y} & =9-12 /(3+3)^{*}(2-1) \\
& =9-12 / 6^{*}(2-1) \\
& =9-12 / 6^{*} 1 \\
& =9-2^{*} 1 \\
& =9-2 \\
& =7
\end{aligned}
$$

Type Conversion

- Automatic

If expression contains different type of operands, lower type is converted to higher type automatically.
Result is converted to the type of operand available in LHS. But,

- float to int truncates the fractional parts
- double to float rounds digits
- long to int drops the excess higher order bits
- Typecasting
(type) Expression;

Operator Precedence

Operator	Associativity	Rank
()	Left to Right	1
[]		
-	Right to Left	2
++		
--		
!		
~		
(type)		

Operator Precedence

$\%$	Left to Right	3
/ $\%$	Left to Right	4
+	Left to Right	5
-		
<< \gg \ggg	Left to Right	6
< <= $>$		
>= instanceof		

Operator Precedence

$==$	Left to Right	7	
$!=$	Left to Right	8	
$\&$	Left to Right	9	
\wedge	Left to Right	10	
\mid	Left to Right	11	
$\& \&$	Left to Right	12	
$\\|$	Right to Left	13	
$?:$	Right to Left	14	
$=$			
$\mathrm{Op=}$			

Mathematical Functions

$\sin ()$ $\cos ()$ $\tan ()$	$\operatorname{asin}($) $\operatorname{acos}()$ atan()	pow(x,y) $\exp (\mathrm{x})$ $\log ()$
sqrt() ceil() floor(round() abs()	$\max (a, b)$ $\min (a, b)$

Thank you

