
By

Dr M. Senthilkumar

Operators in Java

What are Operators?

 An operator is a symbol that tells the compiler to

perform specific mathematical or logical

manipulations

 Java has rich set of built-in operators

Types of Operators
 Arithmetical operators

 Relational operators

 Logical operators

 Assignment operators

 Conditional operators

 instanceof operator

 dot operator

Arithmetic operators

 Arithmetical operators are: +, -, *, /, and %

 They are used to performs an arithmetic

(numeric) operations

 You can use the operators +, -, *, /, and %

with both integral and floating-point data

values

Arithmetic operators

Operator Meaning Variables Integer

Arithmetic

Float

Arithmetic

Mixed mode

Arithmetic

+ Addition a + b 10 + 5 10.0 + 5.0 10.0 + 5

- Subtraction a - b 10 - 5 10.0 - 5.0 10.0 - 5

* Multiplication a * b 10 * 5 10.0 * 5.0 10.0 * 5

/ Division a / b 10 / 5 10.0 / 5.0 10.0 / 5

% Modulus

(Remainder)

a % b 10 % 5 10.0 % 5.0 10.0 % 5

Relational operators

 The relational operators are used to compare two

values

 All relational operators are binary operators and

therefore require two operands

 A relational expression returns zero when the

relation is false and a non-zero when it is true

Relational operators
Operator Meaning Variables Comparing

Integers

Comparing

Float

Mixed

Mode

< Less than a < b 10 < 5 10.0 < 5.0 10.0 < 5

<= Less than or

Equal to

a <= b 10 <= 5 10.0 <= 5.0 10.0 <= 5

> Greater than a > b 10 > 5 10.0 > 5.0 10.0 > 5

>= Greater than or

Equal to

a >= b 10 >= 5 10.0 >= 5.0 10.0 >= 5

== Equal to a == b 10 == 5 10.0 == 5.0 10.0 == 5

!= Not Equal to a != b 10 != 5 10.0 != 5.0 10.0 != 5

Logical operators
Operator Meaning Variables

&& Logical AND a > b && a>c

|| Logical OR n < 10 || n > 50

! Logical NOT !a

Expression1 Expression 2 && Result || Result

True True True True

True False False True

False True False True

False False False False

Assignment operator

 The assignment operator '=' is used for assigning

a variable to a value

 This operator takes the expression on its RHS

and places it into the variable on its LHS

 Variable = Expression;

 c = a + b;

Shorthand Assignment Operators

Operator Example Equivalent

to

+ = A += 2 A = A + 2

- = A -= 2 A = A – 2

% = A %= 2 A = A % 2

/= A /= 2 A = A / 2

*= A *= 2 A = A * 2

Increment and Decrement Operators

 Java provides two special operators: '++' and '--'

for incrementing and decrementing the value of a

variable by 1

 The increment/ decrement operator cannot be

used with constant

 Increment and decrement operators are classified

as pre-increment and post-increment

Increment and Decrement Operators

 The syntax of the increment operator is:

 Pre-increment: ++variable

 Post-increment: variable++

 The syntax of the decrement operator is:

 Pre-decrement: ––variable

 Post-decrement: variable––

Increment and Decrement Operators

 In Prefix form first variable is first

incremented/ decremented, then evaluated

 In Postfix form first variable is first evaluated,

then incremented / decremented.

 ++a

 a++

Conditional operator

 The conditional operator ?: is called ternary

operator as it requires three operands.

 The format of the conditional operator is :

Conditional_ expression ? expression1 : expression2;

 If the value of conditional expression is true then

the expression1 is evaluated, otherwise

expression2is evaluated.

Conditional operator

int a = 5;

int b = 6;

big = (a > b) ? a : b;

 The condition evaluates to false, therefore big

gets the value from b and it becomes 6.

Bitwise Operators

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise X-OR

~ Bitwise Complement

<< Bitwise Shift Left

>> Bitwise Shift Right

>>> Bitwise Shift Right with Zero fill

The instanceof operator

 It is an Object reference operator

Person instanceof Student

The dot operator

 It is used to access the instance variable or

method of an object

Person.age

Person.salary()

Expression Evaluation
a = 9;

b = 12;

c = 3;

x = a - b / 3 + c * 2 - 1;

x = 9 - 12 / 3 + 3 * 2 - 1;

= 9 - 4 + 3 * 2 - 1;

= 9 - 4 + 6 - 1;

= 5 + 6 - 1;

= 11 - 1;

= 10

Expression Evaluation
y = 9 - 12 / (3 + 3) * (2 - 1);

= 9 - 12/ 6 * (2 - 1);

= 9 - 12/ 6 * 1;

= 9 - 2 * 1;

= 9 - 2;

= 7

Type Conversion
 Automatic

If expression contains different type of operands, lower type is

converted to higher type automatically.

Result is converted to the type of operand available in LHS. But,

 float to int truncates the fractional parts

 double to float rounds digits

 long to int drops the excess higher order bits

 Typecasting

(type) Expression;

Operator Precedence
Operator Associativity Rank

.

()

[]

Left to Right 1

-

++

--

!

~

(type)

Right to Left 2

Operator Precedence
*

/

%

Left to Right 3

+

-

Left to Right 4

<<

>>

>>>

Left to Right 5

<

<=

>

>=

instanceof

Left to Right 6

Operator Precedence

==

!=

Left to Right 7

&

^

|

&&

||

?:

=

Op=

Left to Right

Left to Right

Left to Right

Left to Right

Left to Right

Right to Left

Right to Left

8

9

10

11

12

13

14

Mathematical Functions

sin()

cos()

tan()

asin()

acos()

atan()

pow(x,y)

exp(x)

log()

sqrt()

ceil()

floor()

round()

abs()

max(a,b)

min(a,b)

Thank you

